Correction to: Predicting the martensite content of metastable austenitic steels after cryogenic turning using machine learning
نویسندگان
چکیده
منابع مشابه
Delayed Cracking of Metastable Austenitic Stainless Steels after Deep Drawing
In metastable austenitic stainless steels, strain-induced martensitic transformation during plastic deformation enhances work hardening of the material, increasing its strength and in some cases also ductility.1,2) The presence of α’-martensite, however, may increase the susceptibility of these materials to hydrogen embrittlement phenomena, for example delayed cracking.3–6) Delayed cracking can...
متن کاملDislocation Strengthening without Ductility Trade-off in Metastable Austenitic Steels
Strength and ductility are mutually exclusive if they are manifested as consequence of the coupling between strengthening and toughening mechanisms. One notable example is dislocation strengthening in metals, which invariably leads to reduced ductility. However, this trend is averted in metastable austenitic steels. A one-step thermal mechanical treatment (TMT), i.e. hot rolling, can effectivel...
متن کاملsurveying the relevance of proportions to the content of quran verses
چکیده : قرآن چشمه سار زلال هدایتی است که از سوی خداوند حکیم نازل شده تا بشر را به سر منزل کمال برساند. و در این راستا از شیوه های گوناگون بیانی خطابی و بلاغی استفاده کرده تا با فطرت زیبا طلب انسان درآمیزد و اورا مقهور خویش ساخته، به سوی کمالات سوق دهد.ازجمله جنبه های بارز اعجاز بیانی قرآن وجود فواصل در پایان آیات است که کار برد سجع و قافیه در کلام بشر شبیه آن است. برخی ازعلمای سلف تفاوت هایی ب...
15 صفحه اولMartensite in Steels
The name martensite is after the German scientist Martens. It was used originally to describe the hard microconstituent found in quenched steels. Martensite remains of the greatest technological importance in steels where it can confer an outstanding combination of strength (> 3500MPa) and toughness (> 200MPam 1 2 ). Many materials other than steel are now known to exhibit the same type of soli...
متن کاملUsing Machine Learning ARIMA to Predict the Price of Cryptocurrencies
The increasing volatility in pricing and growing potential for profit in digital currency have made predicting the price of cryptocurrency a very attractive research topic. Several studies have already been conducted using various machine-learning models to predict crypto currency prices. This study presented in this paper applied a classic Autoregressive Integrated Moving Average(ARIMA) model ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The International Journal of Advanced Manufacturing Technology
سال: 2021
ISSN: ['1433-3015', '0268-3768']
DOI: https://doi.org/10.1007/s00170-021-08117-9